前回まででうまいこと学習が進むようになりましたので、今回はパラメータの保存と読出をやってみましょう。
例えば、エピソードを100回繰り返しある程度ハーフチーターが前に進む方策を得たらパラメータをいったん保存します。
プログラムを止めて次回動かすときは保存したパラメータを読み込んで、学習済みの状態から動かすことができます。
これで突然プログラムが途中で止まってしまっても被害を最小限にできますね。
Contents
パラメータ保存
メインスクリプトでエピソードの終わり、次のエピソードが始まる直前に下記コードを入れます。
1 2 3 4 5 6 7 8 |
# 47.各ニューラルネットワークのパラメータを10エピソード毎に保存する print('episode, total_reward : ', episode , total_reward) if episode % 10 == 0: T.save(agent.actor.state_dict(), 'actor_params.pt') T.save(agent.critic.state_dict(), 'critic_params.pt') T.save(agent.target_actor.state_dict(), 'target_actor_params.pt') T.save(agent.target_critic.state_dict(), 'target_critic_params.pt') print('==== params were saved. ====') |
パラメータ読込
ActorNN(n.Module)クラスの__init__()内に入れて、actor, target_actorのインスタンス生成と同時にパラメータを引き継いでもらうようにします。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
# 48. actorパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('actor_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('actor_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'actor_params.pt') else: print("パラメータファイルが見つかりません:", 'actor_params.pt') |
CriticNN(nn.Module)クラスも同様に。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
# 49. criticパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('critic_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('critic_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'critic_params.pt') else: print("パラメータファイルが見つかりません:", 'critic_params.pt') |
これで、動きます。
学習のノウハウ
学習のコツを編み出しました。
学習初期はエージェントの動きが小さくなかなか前進しません。
最初はステップ数を10~100程度に小さくして、スタートダッシュだけを覚えさせました。
そこでいったん止めて、ステップ数を200、400と増やしていくと安定して走り続けるハーフチーターが得られます。
計算の高速化(3Dモデルの表示をオフにする)
env = gym.make(“HalfCheetah-v4”, render_mode= ‘human’)
の中のrender_modeを’depth_array’に変更すればOKです。
学習の進行状況のリアルタイム可視化
エピソード数とそのリワードだけを表示しています。
print(‘episode, total_reward : ‘, episode , total_reward)
パラメータの保存を10エピソード毎にやっています。
if episode % 10 == 0:
print(‘==== params were saved. ====’)
↓↓↓出力
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
episode, total_reward : 498 259.49914064186675 episode, total_reward : 499 360.5913236729034 episode, total_reward : 500 493.48175790551875 ==== params were saved. ==== episode, total_reward : 501 -38.671055063944046 episode, total_reward : 502 260.85835046795177 episode, total_reward : 503 327.2605501737727 episode, total_reward : 504 355.8699644344001 episode, total_reward : 505 381.4410905904467 episode, total_reward : 506 342.0158764598478 episode, total_reward : 507 314.5073192976202 episode, total_reward : 508 82.38588849764184 episode, total_reward : 509 355.04443705923273 episode, total_reward : 510 337.79242797960603 ==== params were saved. ==== episode, total_reward : 511 380.88193759326816 episode, total_reward : 512 437.873030625086 episode, total_reward : 513 277.1307694476558 |
解決できた課題
- パラメータのセーブとロード
- 途中で止まった時に続行可能にしたい
- 計算の高速化(print文の無効化)
- 計算の高速化(3Dモデルの表示をオフにする)
- 学習の進行状況のリアルタイム可視化
- 適切なステップ数
- 適切なニューラルネットワーク構造
未解決の課題・疑問点
- 計算の高速化(GPUの利用)
- 適切なエピソード数
- 適切なメモリバッファ数
- model.train()とmodel.eval()の使い方が分からない。
- ネットワークの入力値?パラメータ?の正規化。
- 保存したパラメータを読み出すのはactorとtarget_actorまたcriticとtarget_criticで共通で良いのだろうか。
これまでのスクリプト
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import gymnasium as gym import time import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import os """ pip install pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121 pip install gymnasium pip install matplotlib pip install mujoco pip install gymnasium[mujoco] """ # 44.OUActionNOoiseクラスを作成する class OUActionNoise(object): def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None): self.mu = mu self.sigma = sigma self.theta = theta self.dt = dt self.x0 = x0 self.reset() def __call__(self): x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \ self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape) self.x_prev = x return x def reset(self): self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu) # 10. ReplayBufferクラスを新規作成する class ReplayBuffer: def __init__(self, max_memory_size, n_obs_space, n_action_space): self.max_memory_size = max_memory_size self.n_obs_space = n_obs_space self.n_action_space = n_action_space self.memory_count = 0 self.state_memory = np.zeros((self.max_memory_size, self.n_obs_space)) self.action_memory = np.zeros((self.max_memory_size, self.n_action_space)) self.reward_memory = np.zeros(self.max_memory_size) self.next_state_memory = np.zeros((self.max_memory_size, self.n_obs_space)) self.terminal_memory = np.zeros(self.max_memory_size) #self.terminal_memory = np.zeros(self.max_memory_size, dtype=np.bool) # 11.トランジション保存のためstore_transitionメソドを作成する def store_transition(self, obs, action, reward, next_state, done): #print('store_transition is working.') index = self.memory_count % self.max_memory_size # 最大メモリー数に到達したら、古いデータから上書きされていくギミック #print('obs.detach().numpy().flatten():',obs.detach().numpy().flatten()) self.state_memory[index] = obs.detach().numpy().flatten() self.action_memory[index] = action.flatten() self.reward_memory[index] = reward.flatten() self.next_state_memory[index] = next_state.flatten() self.terminal_memory[index] = 1 - int(done) # ゴールならterminal = 0 となるように #print('state_memory :', self.state_memory) #print('action_memory :', self.action_memory) #print('reward_memory :', self.reward_memory) #print('next_state_memory :', self.next_state_memory) #print('memory.state_memory :', self.terminal_memory) #print('type of state_memory :', type(self.state_memory[0][0])) #print('type of action_memory :', type(self.action_memory[0][0])) #print('type of reward_memory :', type(self.reward_memory[0])) #print('type of next_state_memory :', type(self.next_state_memory[0][0])) #print('type of memory.state_memory :', type(self.terminal_memory[0])) self.memory_count += 1 #print('memory_count :', agent.memory.memory_count) # 16 バッファメモリーからランダムに抽出する def sample_buffer(self, batch_size): # indexが最大メモリに到達していない場合を想定する。 max_index = min(self.max_memory_size, self.memory_count) choosed_index = np.random.choice(max_index, batch_size) observations = self.state_memory[choosed_index] actions = self.action_memory[choosed_index] rewards = self.reward_memory[choosed_index] next_states = self.next_state_memory[choosed_index] terminals = self.terminal_memory[choosed_index] return observations, actions, rewards, next_states, terminals # 6.ActorNNクラスを新規作成する class ActorNN(nn.Module): def __init__(self, alpha=0.001, n_obs_space=17, n_action_space=6, layer1_size=256, layer2_size=256, batch_size=64): #print('ActorNN.__init__ is working.') super(ActorNN, self).__init__() self.fc1 = nn.Linear(n_obs_space, layer1_size) self.fc2 = nn.Linear(layer1_size, layer2_size) self.fc3 = nn.Linear(layer2_size, n_action_space) #26.最適化処理としてアダムを設定する self.optimizer = optim.Adam(self.parameters(), lr=alpha) # 48. actorパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('actor_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('actor_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'actor_params.pt') else: print("パラメータファイルが見つかりません:", 'actor_params.pt') def forward(self, obs): #print('AgetDDPG.ActorNN.forward is working') #print('====ここまではOK1====') x = self.fc1(obs) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) action = F.tanh(x) return action # 22.CriticNNクラスを新規作成する class CriticNN(nn.Module): def __init__(self, beta=0.001, n_obs_space=17, n_action_space=6, layer1_size=256, layer2_size=256, batch_size=64): #print('CriticNN.__init__ is working.') super(CriticNN, self).__init__() # クリティックNNは観察空間+行動空間の2つを入力とする構造 input_dim = n_obs_space + n_action_space self.fc1 = nn.Linear(input_dim, layer1_size) self.fc2 = nn.Linear(layer1_size, layer2_size) self.fc3 = nn.Linear(layer2_size, 1) # 最後は1個で良い #27.最適化処理としてアダムを設定する self.optimizer = optim.Adam(self.parameters(), lr=beta) # 49. criticパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('critic_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('critic_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'critic_params.pt') else: print("パラメータファイルが見つかりません:", 'critic_params.pt') def forward(self, obs, action): input_data = T.cat([obs, action], dim=1) x = self.fc1(input_data) x = F.relu(x) x =self.fc2(x) x = F.relu(x) x = self.fc3(x) return x #一つの状態価値を出力する。 # 3.エージェントクラスを定義する class AgentDDPG: def __init__(self, alpha=0.000025, beta=0.00025, gamma=0.99, tau=0.001, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=64, layer2_size=64, batch_size=64): #print('AgentDDPG.__init__ is working.') # 5.ActorNNクラスのインスタンスを生成する self.alpha = alpha self.beta = beta self.gamma = gamma self.tau = tau self.n_obs_space = n_obs_space self.n_action_space = n_action_space self.n_state_action_value = n_state_action_value self.layer1_size = layer1_size self.layer2_size = layer2_size # 13.バッチサイズを決めておく self.batch_size = batch_size self.actor = ActorNN(alpha=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 9.memoryインスタンスを追加 self.MAX_MEMORY_SIZE = 10000 self.memory = ReplayBuffer(max_memory_size=self.MAX_MEMORY_SIZE, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space) # 19.ターゲットアクターネットワークインスタンスtarget_actorを作成する # actorとtarget_actorのネットワークは同じActorNNで良い self.target_actor = ActorNN(alpha=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 21.ターゲットクリティックネットワークインスタンスtareget_criticを作成する self.target_critic = CriticNN(beta=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 24.クリティックネットワークインスタンスcriticを作成する。 self.critic = CriticNN(beta=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # アクターロスとクリティックロス self.actor_loss = 0 self.critic_loss = 0 # 45.行動ノイズのインスタンス化 self.noise = OUActionNoise(mu=np.zeros(n_action_space)) def choose_action(self, obs): #print('AgentDDPG.choose_action is working.') # 4.方策(アクター)はニューラルネットワークで表現する。 # ActorNNクラスを新規作成し、インスタンスactorとして使用する。 action = self.actor.forward(obs) # 46.行動ノイズを入れて探索性を向上させる。 action += T.tensor(self.noise(), dtype=T.float32) action = action.detach().numpy() return action # 8.remenberメソドを追加 def remember(self, obs, action, reward, next_state, done): self.memory.store_transition(obs, action, reward, next_state, done) # 13.learnメソドを追加 def learn(self): # 14.バッチサイズ分のトランジションが集まるまでは何も実行しない。 if self.memory.memory_count < self.batch_size: return # 15.メモリバッファからデータを抜き出す sample_buffer() # バッチ化されているので変数名を複数形にする observations, actions, rewards, next_states, terminals = self.memory.sample_buffer(self.batch_size) #print('s:', observations) #print(observations.shape) #print('a :', actions) #print('r :', rewards) #print('s_ :', next_states) #print('terminal :', terminals) # 17.抜き出したデータをpytorchで微分可能なようにtorch.tensor化する observations = T.tensor(observations, dtype=T.float32) actions = T.tensor(actions, dtype=T.float32) rewards = T.tensor(rewards, dtype=T.float32) next_states = T.tensor(next_states, dtype=T.float32) terminals = T.tensor(terminals, dtype=T.float32) # 18.ターゲットアクターネットワークインスタンスtarget_actorに # 次の状態next_satesを入れて、ターゲットアクションtarget_actionsとして取り出す。 # このターゲットネットワークはターゲットでないネットワークとNNパラメータを共有させる。 #print('next_states :', next_states) target_actions = self.target_actor.forward(next_states) # 20.ターゲットクリティックネットワークインスタンスtarget_criticに # 次の状態next_statesと上記より算出したターゲットアクションの2つを入力して # 価値関数の推定値ターゲットバリューを出力する。 # TDターゲット:r + γ*V(w)[s_t+1] の部分のこと。 # ターゲットクリティックバリューはターゲットアクターネットワークを使う target_critic_values = self.target_critic.forward(next_states, target_actions) # 23.ベースラインとして機能するクリティックネットワーク(価値関数V(w)[s_t]ネットワーク)に # 現在の状態observationsと行動actionsを入力して # クリティックバリューを算出する critic_values = self.critic.forward(observations, actions) # 25.TDターゲットを算出する:r + γ*V(w)[s_t+1] td_targets = [] for i in range(self.batch_size): td_target = rewards[i] + self.gamma * target_critic_values[i] * terminals[i] td_targets.append(td_target) # TDターゲットの形をバッチに整える td_targets = T.tensor(td_targets, dtype=T.float32) td_targets = td_targets.view(self.batch_size, 1) #viewはreshapeと同じ。64x1に見え方を変更した、という意味 #print('td_targets :', td_targets) #ここから次回はやっていこう 2023/5/16 # ==== (1)クリティックの学習 ==== #self.critic.train() # 28.クリティックの勾配をゼロに初期化する self.critic.optimizer.zero_grad() # 29. TDターゲットと状態価値の二乗誤差を算出して、クリティックの損失関数とする。バッチサイズは64個 critic_loss = F.mse_loss(td_targets, critic_values) self.critic_loss = critic_loss #print('critic_loss : ', critic_loss) # tensor(0.0485, grad_fn=<MseLossBackward0>) # 30. クリティックの損失関数を微分して、勾配を算出する critic_loss.backward() # 31. 勾配からオプティマイザーによってクリティックのパラメータ(重みとバイアス)を更新する self.critic.optimizer.step() # self.critic.eval() # ==== (2)アクターの学習 ==== # 32. アクターの勾配をゼロに初期化する self.actor.optimizer.zero_grad() # 33. アクターに観測情報を入力して行動を算出する。バッチサイズは64個 predicted_actions = self.actor.forward(observations) #self.actor.train() # 34.アクターの損失関数を算出する # Actorの目的は、Criticネットワークの出力(行動価値)を最大化するような行動を選択すること。 # なので、actorNN→criticNNのDDPG構造全体の出力結果をactor_lossとして、actorNNとcriticNNの両方をbackwardし、 # actorだけをパラメータ更新することによりactorの学習をすることができる。 actor_loss = -self.critic.forward(observations, predicted_actions) actor_loss = T.mean(actor_loss) self.actor_loss = actor_loss #print(f'actor_loss: {actor_loss}, critic_loss: {critic_loss}') # 35. DDPG構造全体の損失関数actor_lossを微分し、勾配を算出する actor_loss.backward() # 36. 勾配からオプティマイザーによってアクターのパラメータだけを(重みとバイアス)を更新する self.actor.optimizer.step() # 37. 全ニューラルネットワークのパラメータを更新する。 self.update_network_parameters() # 37. パラメータ更新メソド。 def update_network_parameters(self, tau=None): if tau is None: tau = self.tau # 38. actor, critic, target_actor, target_criticのネットワーク内の全てのパラメータ(重みとバイアス)とその名前を取得する # actorとcriticは先ほど更新されたばかりのパラメーター actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() #print('actor_params : ', actor_params) # actor_params : <generator object Module.named_parameters at 0x000001661B2D9D48> # 39. パラメータをディクショナリとして取り出す。 actor_params_dict = dict(actor_params) critic_params_dict = dict(critic_params) target_actor_params_dict = dict(target_actor_params) target_critic_params_dict = dict(target_critic_params) #print('actor_params_dict : ', actor_params_dict) #print(actor_params_dict.keys()) """ actor_params_dict : {'fc1.weight': Parameter containing: tensor([[-0.1895, -0.0343, 0.1138, ..., 0.2157, 0.0527, -0.1173],/ dict_keys(['fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias']) """ # 40. クリティックの各パラメーター毎に 更新重みtau=0.0001の分だけほんの少しcriticパラメータをtarget_criticパラメータに近づける。 for name in critic_params_dict: critic_params_dict[name] = tau * critic_params_dict[name].clone() + \ (1-tau) * target_critic_params_dict[name].clone() # 41. 更新したcriticパラメータをtarget_criticのパラメータとしてロードする。 self.target_critic.load_state_dict(critic_params_dict) # 42.アクターの各パラメーター毎に 更新重みtau=0.0001の分だけほんの少しactorパラメータをtarget_actorパラメータに近づける。 for name in actor_params_dict: actor_params_dict[name] = tau * actor_params_dict[name].clone() + \ (1 - tau) * target_actor_params_dict[name].clone() # 43. 更新したactorパラメータをtarget_actorのパラメータとしてロードする。 self.target_actor.load_state_dict(actor_params_dict) """ # =====================次はここから============================ def save_models(self): self.actor.save_checkpoint() self.critic.save_checkpoint() self.target_actor.save_checkpoint() self.target_critic.save_checkpoint() def load_models(self): self.actor.load_checkpoint() self.critic.load_checkpoint() self.target_actor.load_checkpoint() self.target_critic.load_checkpoint() """ # 2.エージェントクラスのインスタンスを生成する agent = AgentDDPG(alpha=0.01, beta=0.01, gamma=0.99, tau=0.01, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=256, layer2_size=256, batch_size=64) #env = gym.make("HalfCheetah-v4", render_mode= 'human') env = gym.make("HalfCheetah-v4", render_mode='depth_array') EPISODES = 1001# episodes STEPS = 400 # steps DELAY_TIME = 0.00 # sec total_rewards = [] actor_losses = [] critic_losses = [] for episode in range(EPISODES): obs = env.reset() obs = T.tensor(obs[0], dtype=T.float) # tensor([ 0.0040, 0.0199, -0.0622, 0.0594, -0.0605, 0.0577, -0.0056, 0.0333, -0.0072, 0.0532, -0.0512, 0.0173, -0.0529, -0.1104, 0.0946, -0.0559, 0.0824]) #print(type(obs)) # observation_space : Box(-inf, inf, (17,), float64) #print('observation_space : ', env.observation_space) #print('obs :', obs) reward: float = 0 total_reward: float = 0 done: bool = False for j in range(STEPS): env.render() # ここをDDPGに置き換えていく action = agent.choose_action(obs) # 1.Agentクラスを定義していく #action : [ 0.06660474 -0.11753064 0.02527559 0.06465236 0.1050786 0.05048539] #print('====ここまではOK4====') #print('action_space : ', env.action_space) #print('action : ', action) next_state, reward, done, _, info = env.step(action) #print('next_state, reward, done, _, info :', next_state, reward, done, _, info) """ action : [ 0.06660474 -0.11753064 0.02527559 0.06465236 0.1050786 0.05048539] next_state, reward, done, _, info : [-0.00265179 0.0229547 0.00463243 -0.04729936 -0.00959038 0.04734605 0.03672746 0.02857842 0.09980254 -0.32065693 0.04221647 1.58668951 -2.31089174 1.30338924 -0.25465526 1.08250465 -0.14134398] 0.07553858359316026 False False {'x_position': -0.09233384215910741, 'x_velocity': 0.07920445513883267, 'reward_run': 0.07920445513883267, 'reward_ctrl': -0.0036658715456724168} """ #print('====ここまではOK5====') #7. トラジェクトを保存する。経験再生(ReplayBuffer) agent.remember(obs, action, reward, next_state, int(done)) #12. ニューラルネットワークを学習する agent.learn() # 26.エピソード内での報酬を累積していく total_reward += reward # 27. next_stateをobsとして再出発する #print('next_state:', next_state) obs = next_state obs = T.tensor(obs, dtype=T.float) # 28. チーターの動きを見たいのでスリープを入れる time.sleep(DELAY_TIME) #print('total_reward : ', total_reward) total_rewards.append(total_reward) actor_losses.append(float(agent.actor_loss)) critic_losses.append(float(agent.critic_loss)) # print('epsisode', i, 'score %.2f' % score, '100 game sverage %.2f' % np.mean(score_history[-100:])) # 47. 各ニューラルネットワークのパラメータを10エピソード毎に保存する print('episode, total_reward : ', episode , total_reward) if episode % 10 == 0: T.save(agent.actor.state_dict(), 'actor_params.pt') T.save(agent.critic.state_dict(), 'critic_params.pt') T.save(agent.target_actor.state_dict(), 'target_actor_params.pt') T.save(agent.target_critic.state_dict(), 'target_critic_params.pt') print('==== params were saved. ====') #print('total_rewards : ', total_rewards) #plt.plot(total_rewards) #plt.plot(actor_losses, label='actor_losses') #plt.plot(critic_losses, label='critic_losses') plt.plot(total_rewards, label='total_rewards') plt.legend() plt.grid(True) plt.ioff() plt.show() env.close() # 空なんですけど・・・ print('script is done.') # https://gymnasium.farama.org/ |
The following two tabs change content below.
Keita N
最新記事 by Keita N (全て見る)
- 2024/1/13 ビットコインETFの取引開始:新たな時代の幕開け - 2024年1月13日
- 2024/1/5 日本ビジネスにおける変革の必要性とその方向性 - 2024年1月6日
- 2024/1/3 アメリカ債権ETFの見通しと最新動向 - 2024年1月3日