DDPG by gymnasium 16日目

前回

学習が進まず、チーターの様子を見ると開始直後に静止してお終いです。ぐーたらになってしまいました。

考えうる原因

  • ノード数が多すぎる?256
  • 学習率が小さすぎる?0.01
  • パラメータの初期値 Heがうまくいってない?/1√256は小さすぎる?
  • レイヤー正規化が上手くいってない?

→レイヤー正規化をキャンセルしてみます。

actor:
def forward(self, obs):
        #print(‘AgetDDPG.ActorNN.forward is working’)
        #print(‘====ここまではOK1====’)
        x = self.fc1(obs)
        #x = self.bn1(x)
        x = F.relu(x)
        x = self.fc2(x)
        #x = self.bn2(x)
        x = F.relu(x)
        x = self.fc3(x)
        action = F.tanh(x)
        return action

 

critic:

def forward(self, obs, action):
        input_data = T.cat([obs, action], dim=1)
        x = self.fc1(input_data)
        #x = self.bn1(x)
        x = F.relu(x)
        x = self.fc2(x)
        #x = self.bn2(x)
        x = F.relu(x)
        x = self.fc3(x)
        return x #一つの状態価値を出力する。
結果:ダメです!学習が進みません。
  
次はHeの初期値をキャンセルしてみます。
→結果:ダメです、収益が徐々に下がり気味で、Actor_lossもなぜか安定して増えていっています。
次はノードを256から64に落としてみます。また同時にバッチサイズも256から64に落としてみます。
→結果:Stepは200にして始めています。
300回やったあと、続けて1000回やってみました。頑張ってる?
ここでStepを300にしてみます。安定して前進している姿を経験再生バッファに溜め込むのが目的です。
悪化しました・・・。
ということは、残すところ学習率?0.01から0.001に細かくしました。
100Stepを1000Episode、200Stepを1000Episode実行しました。
上手くいきました。

ActorNN:He適用しない, alpha=0.0001, Adam, bn1,キャンセル bn2キャンセル

batch64,obs17→17 fc1 64→64 ReLU 64→64 fc2 64→64ReLU64→64fc3 6 →Tanh6→ action6

CriticNN:He適用, beta=0.001, Adam,bn1,キャンセル bn2キャンセル

batch64,obs17+act6→input23  fc1 64→64 ReLU 64→64 fc2 64→64fc3 1→活性化関数なし→Q_value 1

結果的に、

  • ノード数が多すぎる?256→64
  • 学習率が小さすぎる?0.01→0.001
  • パラメータのHe初期値 →キャンセル
  • レイヤー正規化→キャンセル

でうまくいきましたが、学習率が大きすぎたのが原因ではないかと考えます。

またノード数が多すぎて過学習を起こしていた可能性もあります。

またレイヤー正規化が上手くいかないのも腑に落ちません。

He初期化は原因として考えにくいので、まずはここだけ戻してみます。

問題ありませんでした。次にレイヤー正規化を適用してみます。

600Epsodeを過ぎたあたりで悪化していますが、何とか持ち直しています。どうやら、スタートダッシュで前傾姿勢になりすぎて逆に速度が遅くなっているようです。ひっくり返っているのでしょう。1000回超えたあたりでStepを伸ばしたので前のめりが修正されつつあると考えます。よってStep300にして1000回続けてみます。

ブレ幅が大きいですが、よさそうです。

いや、やっぱダメです(笑)ずっと逆立ちして頭と前足で前進しています。

600回~900回あたりで、変な癖を覚えてしまったようです。

ほんとAIってやつは突拍子もないことを考え付きます。

 

DDPG by gymnasium 15日目

さて最終章に近づいてまいりました。(ような気がする)

ニューラルネットワークの学習をより安定化させるために標準化Standarzation,正規化Normalizationをやっていきましょう。

まずは入力値について考えます

各特徴量ごとの学習の感度を同じくらいにそろえるために、入力値の値を相対的に加工します。

標準化

Z-scor normalization

手持ちデータを平均ゼロ、分散1の正規分布にする手法

正規化

Min-Max normalization

最小値~最大値を0~1にスケーリングする手法

 

使い分け

標準化:最大最小が決まっていない場合、外れ値が存在する場合

正規化:最大値および最小値が決まっている場合

戦闘力は標準化が良い

住宅価格も標準化が良い

弱点

弱点として、入力値はいいのですが、ネットワークを伝播していくうちに各ノードの入力値(活性化関数がかかる前)の分布は崩れていきます。

すると、勾配消失が起こりやすくなります。

重みパラメータの初期値を工夫する

そこで重みの初期値を工夫して一様分布や正規分布に従うランスを使うのですがディープラーニングではうまく動かないことがあります。

解決策として 乱数xネットワークの大きさに合わせた係数 を初期値とすると 分布が崩れにくくなるそうです。(ちょっとわかりません。)

活性化関数がシグモイド関数の場合はXavierの初期値、ReLU関数の場合はHeの初期値というものが良いそうです。

重みの要素数がnである場合、Heの初期値は1/√nとなります。

 

バッチ正規化

もっと直接的で良い方法があります。

各ノードに入力されたら、そこで正規化してしまえば良いのです。各層で毎回正規化を繰り返します。

因みになぜバッチ正規化というのかはわかりません。各レイヤーのノード群をバッチと呼んでいるのでしょうか。

とにかく各層のノードを正規化するのです。

学習の成功率を上げるとともに過学習もしにくくなるらしいです。

やりかた

標準化して線形変換するだけです。

標準化:

あるレイヤーのノード群の平均値μと分散sを求める

各ノードの値xから平均値μを引いて標準偏差σで割った値が標準化された値z

線形変換:

zにパラメータw,バイアスbを使って y=wz+bへ線形変換する。

正確に言うとこれはバッチ正規化の発展系であるレイヤーノーマライゼーションを使っています。

ActorNNクラスの改造:

重みパラメータ、バイアスパラメータの初期値

今まではランダムに初期値を決めていたところをHeの初期値に変更しました。つまり、ネットワークの各層のノード数ActorNN.各fc.weight.data.size()[0]に応じて、初期値の上下限f1,f2を決定するようにしました。nn.init.uniform_()。

各層の入力値を正規化

今までは各層への入力値は特に加工せずに活性化関数へ入れていましたが、入力値は正規化nn.LayerNorm()を適用してから活性化関数に入れるように変更しました。入力値→正規化bn→活性化関数ReLU。

CriticNNクラスの改造:

こちらも考え方は同じです。

学習結果

1000エピソード以上学習しましたが、どういうことでしょう調子いいのは300エピソードくらいのところで、そこから一気に悪化しています。

横軸:エピソード、縦軸:収益

ハーフチーターは一体何をやっているのでしょうか?

開始直後に素早く美しく前転し、ひっくり返りながらバタバタしていました。どうやら300回転超えたあたりから学習するべきデータが間違ったものしかない状況になり、回復しなかったと推測します。負のスパイラルに落ち込んでいったのでしょう。

反省

今回の条件を確認します。

agentインスタンス:

alpha=0.01,
beta=0.01,
gamma=0.99,
tau=0.01,
n_obs_space=17 ,
n_action_space=6,
n_state_action_value=1,
layer1_size=256,
layer2_size=256,
layer3_size=256,
batch_size=256,

AgentDDPGクラス__init__():

alpha=0.000025,
beta=0.00025,
amma=0.99,
tau=0.001,
n_obs_space=17 ,
n_action_space=6,
n_state_action_value=1,
layer1_size=64,
layer2_size=64,
layer3_size=64,
batch_size=64,
self.actorインスタンス:
alpha=0.000025,※ここ間違った。alpha=self.alphaにするべき
n_obs_space=17,※ここ間違った。同上
n_action_space=6,※ここ間違った。同上
 layer1_size=64,※ここ間違った。同上
layer2_size=64,※ここ間違った。同上
layer3_size=64,※ここ間違った。同上
batch_size=64※ここ間違った。同上

なので actorとしては

ActorNN:He適用, alpha=0.000025, Adam

batch64,obs17→17 fc1 64→64 bn1 64→64 ReLU 64→64 fc2 64→64 bn2 64→64ReLU64→64fc3 6 →Tanh6→ action6

※layer3_sizeは不使用

という状況でした。一部間違っていました。直します。

修整後↓

self.actor = ActorNN(device=self.device, alpha=self.alpha, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space,
                            layer1_size=self.layer1_size, layer2_size=self.layer2_size, layer3_size=self.layer3_size, batch_size=self.batch_size)

ちなみにActorNNの初期化メソドは

ActorNNクラス__init__():
alpha=0.001
n_obs_space=17,
n_action_space=6
layer1_size=256,
layer2_size=256,
layer3_size=256,
batch_size=64

です。

target_actorインスタンスも下記のように間違っているので

self.target_actor = ActorNN(device=self.device, alpha=0.000025, n_obs_space=17, n_action_space=6,
                                    layer1_size=64, layer2_size=64, layer3_size=64, batch_size=64)

直します。↓修整後

self.target_actor = ActorNN(device=self.device, alpha=self.alpha, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space,
                                    layer1_size=self.layer1_size, layer2_size=self.layer2_size, layer3_size=self.layer3_size, batch_size=self.batch_size)

 

次に、target_criticインスタンスを見ていきます。

beta=0.000025,※ここも間違い。self.betaにするべき
n_obs_space=17,※同上
n_action_space=6,※同上
 layer1_size=64,※同上
layer2_size=64,※同上
layer3_size=64,※同上
batch_size=64)※同上
これも間違っているので修正。修整後はこちら↓
self.target_critic = CriticNN(device=self.device, beta=self.beta, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space,
                                    layer1_size=self.layer1_size, layer2_size=self.layer2_size, layer3_size=self.layer3_size, batch_size=self.batch_size)

同じくtarget_criticインスタンスもself.なんちゃらにしていないので修正が必要です。修整後↓

self.critic = CriticNN(device=self.device, beta=self.beta, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space,
                                    layer1_size=self.layer1_size, layer2_size=self.layer2_size, layer3_size=self.layer3_size, batch_size=self.batch_size)

なので target_criticとしては

CriticNN:He適用, beta=0.000025, Adam

batch64,obs17+act6→input23  fc1 64→64 bn1 64→64 ReLU 64→64 fc2 64→64 bn2 64→64fc3 1→活性化関数なし→Q_value 1

※layer3_sizeは不使用

ちなみに
CriticNNクラスの__init__()
beta=0.001,
n_obs_space=17,
n_action_space=6,
 layer1_size=256,
layer2_size=256,
layer3_size=256,
batch_size=64):
です。

現在までのまとめ

学習率とノード数を間違って入れていましたが、これが悪いとは現時点では言えません。

可能性としてはバッファメモリが10000で1エピソード2000ステップなので5回連続でダメな収益結果の場合、「ひっくり返ってお終い」、のようなダメな経験しか持ってない状態になります。

これが、二度とまともな状態に学習が継続できない要因ではないでしょうか。

(メモ:ステップを400とすると1エピソードがなぜか5倍の2000ステップまで実行されます。仕様ですかね。)

修正したコード

ひとまず、間違っていた部分を直したので張っておきます。

agent = AgentDDPG(device=device, alpha=0.01, beta=0.01, gamma=0.99, tau=0.01,
                  n_obs_space=17 , n_action_space=6, n_state_action_value=1,
                  layer1_size=256, layer2_size=256, layer3_size=256, batch_size=256, mode=EVAL_TRAIN_MODE) # cuda追加
がネットワーク生成までこのパラメータが適用されるように修正しました。
これの結果:学習が進みません。チーターの様子を見ると開始直後に静止してお終いです。ぐーたらになってしまいました。

ノード数が多すぎる?256

学習率が小さすぎる?0.01

パラメータの初期値 Heがうまくいってない?/1√256は小さすぎる?

レイヤー正規化が上手くいってない?

次回へ続きます。

DDPG by gymnasium 9日目

前回まででうまいこと学習が進むようになりましたので、今回はパラメータの保存と読出をやってみましょう。

例えば、エピソードを100回繰り返しある程度ハーフチーターが前に進む方策を得たらパラメータをいったん保存します。

プログラムを止めて次回動かすときは保存したパラメータを読み込んで、学習済みの状態から動かすことができます。

これで突然プログラムが途中で止まってしまっても被害を最小限にできますね。

パラメータ保存

メインスクリプトでエピソードの終わり、次のエピソードが始まる直前に下記コードを入れます。

パラメータ読込

ActorNN(n.Module)クラスの__init__()内に入れて、actor, target_actorのインスタンス生成と同時にパラメータを引き継いでもらうようにします。

CriticNN(nn.Module)クラスも同様に。

これで、動きます。

学習のノウハウ

学習のコツを編み出しました。

学習初期はエージェントの動きが小さくなかなか前進しません。

最初はステップ数を10~100程度に小さくして、スタートダッシュだけを覚えさせました。

そこでいったん止めて、ステップ数を200、400と増やしていくと安定して走り続けるハーフチーターが得られます。

計算の高速化(3Dモデルの表示をオフにする)

env = gym.make(“HalfCheetah-v4”, render_mode= ‘human’)
の中のrender_modeを’depth_array’に変更すればOKです。

学習の進行状況のリアルタイム可視化

エピソード数とそのリワードだけを表示しています。
print(‘episode, total_reward : ‘, episode , total_reward)
パラメータの保存を10エピソード毎にやっています。
if episode % 10 == 0:
print(‘==== params were saved. ====’)
↓↓↓出力

解決できた課題

  1. パラメータのセーブとロード
  2. 途中で止まった時に続行可能にしたい
  3. 計算の高速化(print文の無効化)
  4. 計算の高速化(3Dモデルの表示をオフにする)
  5. 学習の進行状況のリアルタイム可視化
  6. 適切なステップ数
  7. 適切なニューラルネットワーク構造

未解決の課題・疑問点

  1. 計算の高速化(GPUの利用)
  2. 適切なエピソード数
  3. 適切なメモリバッファ数
  4. model.train()とmodel.eval()の使い方が分からない。
  5. ネットワークの入力値?パラメータ?の正規化。
  6. 保存したパラメータを読み出すのはactorとtarget_actorまたcriticとtarget_criticで共通で良いのだろうか。

これまでのスクリプト

 

DDPG by gymnasium2日目

前回

前回はハーフチーター環境をランダムな行動で動かすところまでいきました。

actionの決定は、行動空間からのランダムサンプリング

action = env.action_space.sample()

になっています。いわゆる「方策:ポリシー」と呼ばれるものです。
エージェント(行動する者)はポリシー(方策・方針)を定めることによって、その状況(環境、観測情報)に応じて行動を選択します。その決定は確率的であったり一意的あるいは決定論的であったりします。
このポリシーを何かしらのアルゴリズムで調整・改善することで最大収益が得られるようにしていくのがDDPGなどの強化学習手法の目的です。
「収益が最大になるようにポリシーを改善していく」のほうが正しい言い方でしょうか。

改善案

Agentクラスを新規作成して、インスタンスagentを作り、DDPG的な学習ができるようなメソドを作成していく。

ではAgentDDPGクラスを作成していく。

メインスクリプトでagent = AgenDDPG()インスタンスを生成してから
action = agent.choose_action(obs)メソドを実行することで、行動空間action_spaceから行動をランダムに選択してactionをひとつ選択されたものを戻り値とすることができました。まだこの時点ではDDPG的な要素を入れていません。

DDPG部分を作っていく

DDPGは方策勾配法を基礎としており、目的関数J= E[ Σ G(τ) * grad log π(θ)]を最大化するために最初は適当な方策πをちょっとずつ自動調整していく方法です。

勾配 grad Jを使って、パラメータθを最適化していくのですがどう表現したらよいでしょうか。方策勾配法の発展経緯を追っていくと、下記のように読み取れます。

  1. 基本の方策勾配法: E[ Σ G(τ) * grad log π(θ)]
  2. REINFORCE的に収益ノイズ除去: E[Σ G(t) * grad log π(θ)]  ]
  3. ベースライン付き: E[Σ ( G(t)-b) * grad log π(θ)]  ]
  4. ベースラインを価値関数とする:E[Σ ( G(t)-V(w) )* grad log π(θ)]  ]
  5. TD法であること:( r+γV(w)[s_t+1] – V(w) [s_t]) *  grad log π(θ)
  6. 方策π(θ)をニューラルネットワークで表現:actorという。入力s、出力π(a|s)(行動確率probと表現することもある)
  7. 価値関数V(w)をニューラルネットワークで表現:criticという。※真の価値関数vは求めない。Vは中途半端な推定値でも方策πは学習できる。入力はactorと同じs、加えてactorの出力であるπがcriticの入力として使用されます。

「actorの出力をcriticの入力とする」部分がDDPGが連続値に対応できるポイントです。この要素を除くと出力が離散的になりそのアルゴリズムはactor-criticと呼んでいました。actor-criticは行動の選択肢が左右の2つある場合、「右に行く」と決めるような状況で使います。

DDPGは連続値なので、「車のハンドルを右へ15.2°回転させつつ、ブレーキを20%踏み込む」という出力が得られます。(のはず!)

では、ちょっとずつコーディングしていく。

python、プログラミング初級者でも理解できるようにちょっとずつ変えていきます。

 1.エージェントインスタンスのchoose_actionメソドを使って行動actionを得るように変更する。

        変更前:action = env.action_space.sample()
        変更後:action = agent.choose_action(obs)
 2.エージェントクラスのインスタンスを生成する
agent = AgentDDPG()
3.エージェントクラスを定義する
class AgentDDPG:
    def __init__(self):
    def choose_action(self, obs):

4.方策(アクター)はニューラルネットワークで表現する。ActorNNクラスを新規作成し、インスタンスactorとして使用する。

    def choose_action(self, obs):
        action = self.actor.forward(obs)
        return action

5.ActorNNクラスのインスタンスを生成する

    def __init__(self):
        self.actor = ActorNN()

6.ActorNNクラスを新規作成する

class ActorNN:
    def __init__(self):
    def forward(self, obs):
        action = [0.0 for i in range(6)]
        return action
まだニューラルネットワーク構造まで作成していないので、obsは入力として使っていませんし、actionも仮出力として[0,0,0,0,0,0]にしています。

ActorNNクラスを作りこんでいく

3層の全結合ネットワーク、そして活性化関数はreluにしています。

AgentDDPGクラスを作りこんでいく

 

メインスクリプトと整合性を合わせる

こんな感じで作っていきました。

訓練について

  1. actorは目的関数J(θ)が最大になるように学習する。実際の計算は-J(θ)が最小になるように学習する。
  2. target_actorを正解データとして教師あり学習する
  3. criticはtarget_actorを正解データとして教師あり学習する

PySimpleGUI のメモ

PySimpleGUI のメモ