IOT:速くて軽い MQTTプロトコル

こんにちは、Keita_Nakamori(´・ω・`)です。

みなさんIOTしていますか?

今日はIOTで流行っている通信プロトコルであるMQTTについてやっていこうと思います。

なぜMQTTか

OASISという規格団体において、軽い、公開、単純、簡単に使えるというコンセプトで設計されたプロトコルです。

従来のHTTPプロトコルは人と人がコンピューターを介してコミュニケーションを取ることが前提となっており、1つのコンテンツで多くの情報をやり取りしています。

しかし、IOTの場合は莫大な数のIOTデバイスと接続することになりますので、速くて軽いプロトコルである、”MQTTプロトコル”を使いこなしていく必要があります。

MQTTの特徴

すこし専門用語を出しますが、

MQTTはクライアント・サーバー間のpublish・subscribeメッセージをバイナリ(2進数)でやり取りするプロトコルです。

  • トランスポート層ではTCPをベースとます。
  • セキュリティはTLS/SSLを使用します。
  • MQTTは確実なデータ発信と重複を避けることができます。
  • 順序が決まっていてかつ可逆的な2進数情報をread/writeの両方向に対して適用されます。

MQTTの用語

peer:仲間という意味で、PCやIOTデバイスのようなサーバーではない端末のことです。MQTTクライアントとも言います。

Broker:サーバーのことです。Central MQTT BrokerとかLocal MQTT Brokerという使い方をします。

Publish:Brokerにデータを渡す。

Topic:Publishされたデータを格納する箱。encodingはutf-8。例えばAなら01000001という2進数8bitで表現されます。

Topic Level:トピックはツリー構造で格納されます。例えば

  • mytopic/machine_001/transmission_system_001/bearing_001/temperature

というように、トピックレベルセパレーターと呼ばれるスラッシュ記号で表現します。この各ディレクトリのことをトピックレベルと呼びます。

Subscribe:Broker内のTopicのデータを送ってもらうよう申し入れをします。

QoS:サービス品質 Quality of Serviceです。

レベルの低いものから

QoS_0

Publisherがメッセージを投げたらBrokerを通してSubscriberに渡す。そして、Publisherはメッセージを消す。

QoS_1

PublisherはメッセージをBrokerに投げる前に、Publisher自身がメッセージを保持する。PublisherがメッセージをBrokerに投げたら、Broker内で一旦保持してからSubscriberにわたす。渡ったらBrokerはメッセージを消して、続いてPublisherもメッセージを消す。少し複雑になりました。

QoS_2

PublisherはメッセージをBrokerに投げる前に、Publisher自身がメッセージを保持する。PublisherはメッセージをBrokerに投げたら、Broker内で一旦保持してからSubscriberにわたす。渡ったらBrokerはPUBRECをPublisherへ渡して、PUBRELが返ってきてから、Broker内のメッセージを消す。

渡ったらBrokerはメッセージを消して、PUBCOMPを渡す。

それによって、Publiserはメッセージを消す。とても長い手順を踏むことになります。

MQTTのヘッダーフォーマット

頭にヘッダー情報をつけます。ヘッダーは2バイトで構成されています。

  1. 4bitでコマンドメッセージタイプを指定します。
  2. 1bitでDUP(デュプリケート、複製)
  3. 2bitでQos Level(Quality of Service Level)
  4. 1bitでRERTAIN

これで1バイトです。

次の1バイト中最大4bitを使ってRemaining Lengthを表現します。

その次にペイロード(内容)を書いていくのですが、それはまたあとでやりましょう。

 

 

 

IOT:ラズベリーパイ パーティクルセンサー

どーもご無沙汰しております、Keita_Nakamori(´・ω・`)です。

先日、パーティクルセンサーが届きましたので、使ってみようと思います。

Particle Sensor Model PPD42NS

ヒーターで空気を温めて上昇気流を作り、光学式センサーを通過させることによって、粒子数をカウントするとのことです。なので、向きが大事です。

スペック

スペック的にPM2.5なんてのも取れそうです。

安定するまでに1分間必要と書いてあるので、スクリプトの中で”現在立ち上げ中です。”とか”カウントダウン”とかを入れてあげると良いと思います。

  • 検出可能な粒子サイズ: 1μm (minimum.)
  • 検出濃度範囲: 0~28,000 pcs/L (0~8,000pcs/0.01 CF=283mL)
  • 供給電圧: DC5V ±10% (CN1コネクタ:ピン1=GND , ピン3=+5V)
  • 作動温度範囲: 0~45°C
  • 作動湿度範囲: 相対湿度95% 以下 (結露なきこと)
  • 電力消費: 90mA
  • 周囲温度: -30~60°C
  • 安定するまでの立上時間:1分
  • 電源ONから安定に必要な時間:1分
  • 寸法: 59(W) × 45(H) × 22(D) [mm]
  • 出力方式:負論理、デジタル出力 ← ここは後で解説します。
  • Hi :  4.0V以上  Low :  0.7V以下

コネクタ

右から 黒 赤 黄 のケーブルがついた脱着可能なコネクタがついていました

しかし、これ、ブレッドボードに刺さるわけでも、ブレッドボード用のケーブルがささるわけでもないので、取っ払ってしまいました。

コネクタケーブルを引き抜くと、ちょうどラズパイのGPIOと同じサイズのピンが出てきますので黒 赤 黄の3本のメス型ケーブルに差し替えました。

説明書によると 右から

CN : S5B-EH(JST)
1 : COMMON(GND)
2 : OUTPUT(P2)
3 : INPUT(5VDC 90mA)
4 : OUTPUT(P1)
5 : INPUT(T1)・・・FOR THRESHOLD FOR [P2]

となっていますので、使用するのは、黒:GND 赤:5V 黄:出力P1 の3つになります。

ラズパイ側のGPIO

事前に必要な知識として、ラズパイGPIOピンの指定方法には2種類の表現があります。

1.BOARD番号で指定する場合

PythonではGPIO.setmode(GPIO.BOARD)と書きます。

ラズパイのボード(基盤)の配置順に番号が振られていて、たとえばpin=40とした場合はGPIO21のことを指します

2.BCM番号で指定する場合

こちらはGPIO.setmode(GPIO.BCM)と書きます。
GPIO21を指定したいときは、そのままpin=21と書きます。

こちらのほうがわかりやすいので私はこちらを使っています。どっちでもOKです。

出力データと処理の話

  • 出力はパルスで出力されます。
  • 低パルスの状態が30秒間に占める割合(LPO:Low Plulse Occupancy time)を粒子数として換算するようです。

「1μm以上の粒子が283mLの中に何個入っているか」と「低パルス占有率」の関係を測定したサンプルデータです。(メーカーHPより)

 

スクリプト

では、センサーから出力されたLowパルスの占有率を算出しましょう。

まずは、うまく行かなかった例です。

改良

動かないので、改良ついでにクラス化してみました。

なおかつ30秒ごとに出力される粒子濃度のデータをconsentration.txtに随時書き出すようにしました。

 

出力:consentration.txt

中身は下記のような感じです。

データ処理

データを処理するためにpandasで読み込んで、整えましょう。

文字パターン抽出 ” .str.extract() ” で文字列を 年月日 時間 濃度 に切り分けます。

すると、こんな感じで切れました

ymd hms ms consentration
0 2019-05-30 19:16:40.318976 0.07213182909293626
1 2019-05-30 19:17:10.434010 0.0951778309901365
2 2019-05-30 19:17:40.536987 0.07830632987722516
3 2019-05-30 19:18:10.660109 0.05319190541036891
4 2019-05-30 19:18:40.774304 0.030014825256954498
5 2019-05-30 19:19:10.876265 0.01660005851583172
6 2019-05-30 19:19:40.980323 0.019892370764988204

可視化

ざっくりとグラフを書いてみます。

なんじゃこりゃ(*´﹃`*)

でもとりあえず、なんかおかしいことは分かりました。なんで階段状なんだろう。

 

もっと研究が必要ですね。

 

IOT:ラズベリーパイでサーボドライバPCA9685を使ってみる

Keita_Nakamoriです。

前回はサーボモータSG92Rをラズパイに直結して動かしてみました。

今回はサーボモータを16個同時に動かすことができるサーボドライバPCA9685を使って、SG90とSG92Rを同時に動かしてみようと思います。

 

動画

基本スペック

  • I2C周波数範囲:24-1526Hz
  • 動作電圧:2.3-5.5V
  • 入出力の許容電圧:5.5V
  • 最大62個のPCA9685が接続できます¥。よって992個のサーボモータを同時に動かせます。

余談:I2Cはアイ スクウエア シーと呼ぶそうです。

ピン

左端のピン

は、上から

  • GND:ラズパイGIPIOのグランドに接続する
  • DE:??? どこにも繋げない
  • SCL:シリアル通信のクロック ラズパイGIPIOのSCL1に繋ぐ
  • SDA:シリアル通信のデータ   ラズパイGPIOのSDA1に繋ぐ
  • VCC:プラス電圧 ラズパイGPIOの+5Vに繋ぐ
  • V+:??? どこにも繋げない

下端のピン

はサーボモータを接続します、左から0~15番が振られてあり合計16個のサーボモータと接続できます。

上から、

  • PWM:サーボモータのPWM=オレンジ
  • V+:サーボモータの赤
  • GND:サーボモータの茶

上端のコネクタ

は、電源供給です。

  • 左はV+:ラズパイの5Vに繋ぎます
  • 右はGND:ラズパイのGNDに繋ぎます
  • 今回はラズパイのGPIOに繋ぎましたが、16個サーボモータを繋げるときは、別途電源を取らなくてはならないと思います。

制御の話

  • PCA9685はPWMで動きます。
  • パルス幅によってサーボモータの回転角が0~180degが決定されます。
    • 例えば 0.5ms幅のとき0deg、1.5ms幅のとき90deg、2.5ms幅のとき180degになったりします。(周波数で変更できます。周波数が高いほうが高速で制御できます。)
  • アナログサーボの周波数範囲は30~60Hzのものがほとんどです。
  • 例えば、周波数f=60Hzのとき周期はT=1/f=17ms です。(早い方がいいので60Hzで考えましょう。)
  • 周期Tの分解能は12bitなので、周期Tを2^12=4096分割できます。1分割分を1ステップと呼ぶことにしましょう。
  • 周期17msを4096分割できるので、1ステップあたり0.004150390625ms になります。
  • パルス幅を0.5msにしたければ、ステップは0.5/(17/4096)=120.47058823529412ステップになります。
  • サーボモータ角度をodegにしたいときは0.5msですから、120ステップをONして、残りの(4096-120)をOFFにすれば良いのです。
サーボ回転角度[deg] ONの時間 [ms]  ステップ数
0 0.5 120
60 1.0 240
90 1.5 361
120 2.0 481
180 2.5 602
  • サーボ回転角度を0degから180degにするためには、(602-120)=482ステップになります。
  • 1degあたりのステップ数は 482ステップ/180deg = 2.7 (step/deg)
  • なので任意のサーボ回転角度θでステップ数Nsを表現すると、Ns=120+2.7θ ということになります。

モジュール Adafruit_PCA9685

pip3 install Adafruit_PCA9685 したところ拒否されました。

pipのバージョンを上げて再チャレンジします。

pip3 install –upgrade pip3 と書いたところ pip3でなくてpipで書けみたいなことを言われました。

pip install –upgrade pip と書いたところ許可がないといっております。

なので、スーパーDOしてみます。

sudo pip install –upgrade pip これでOKでした

Successfully uninstalled pip-19.0.3
Successfully installed pip-19.1.1

そして再度チャレンジ

pip3 install Adafruit_PCA9685  [Errno 13] 許可がありません

なるほど読めました。やはり須藤ですね。

sudo pip3 install Adafruit_PCA9685

Successfully installed Adafruit-GPIO-1.0.3 Adafruit-PCA9685-1.0.1 adafruit-pureio-0.2.3

これでやっとAdafruit_PCA9685モジュールがインストールできました。

pip freezeすると

Adafruit-GPIO==1.0.3
Adafruit-PCA9685==1.0.1
Adafruit-PureIO==0.2.3

が入っていました。注意点として、importするときはAdafruitの後ろにはハイフンではなくアンダースコアになります。

スクリプト

余談

ラズパイの操作はWindowsマシンからrealVNC Viewerでリモートしているのですが、ラズパイ側のidleに書いたスクリプトをcnt+c しても Windows側にcnt+v できません。

コツがありまして、ラズパイ側のText Editorに一旦貼り付けた後に、それをcnt+cしてから、Windows側にcnt+v すると、しっかりと貼り付けられます。

どうぞお試しあれ。

お知らせ:当該webサイトをSSL化しました

こんばんは Kazu_Manabuです。

当該webサイトをSSL化しました。URLの頭がhttpsになっております。

やり方です。

エックスサーバーを使っているのですが、

まず、エックスサーバーにログイン

インフォパネル内の「サーバー管理」

任意のドメイン名の「選択する」を押す

SSL用アドレスに「https://www.toyo-interest.com/」が追加されます。httpsにちゃんとなっています。

1分位すると反映されます。

次に、wordpressにログイン

ダッシュボードの設定>URLのhttp://~~~をhttps://~~~に書き換えます。というかsを挿入します。

そして、私の場合は20分くらい放置してやっと繋がるようになりました。

かなりドキドキしました。

二度とつながらないんじゃないかとか、ハラハラしました。

実はわたくし、

ろくに調べず一番最初にwordpressの設定でhttpをhttpsにいじってしまい、繋がらなくなってしまいました。ログインできないのでダッシュボードに入ることができず、元通りにすることができないという事態に陥りました。

調べていくと、エックスサーバーのインフォパネル内の「サーバー管理」でSSL化しなさいと書いてあったのでやってみたら、うまくいきました。

本当に良かったです。(*´﹃`*)