Web Application: 第5回 npyデータからCNN

こんにちは Keita_Nakamori(´・ω・`)です。

前回はTensor Flowにインプットするnpyデータを作成しました。

今回はTensorflowとKerasで畳み込みニューラルネットワークを構築して、訓練・評価してみます。

keras公式ページのSequential-model-guideを参考にします。

Contents

スクリプト:cnn_test.py

VGG-likeなconvnet を参考に動作を確認していきます。

実行

では Anacondaプロンプトから $ conda info -e で仮想環境リストを確認して

djangoaiが存在することを確認したら、$ conda activate djangoai して仮想環境に入ります。

カレントディレクトリをcnn_test.pyがある場所まで移動して、実行します。

結果

エポック数30回やった結果、精度はacc: 0.99まで向上しましたが、検証データではTest accuracy:0.81までしか出ていません。おそらく過学習になっていると思われます。まだまだ改善の余地ありです。

オプティマイザーを変更

SGDからAdamに切り替えてみました。大きく悪化しました。(笑)

可視化にチャレンジ

djangoai仮想環境内で$pip install matplotlib します。

matplotlib-3.1.1 が入りました。

下記コードを最後に追加しました。オプティマイザーはSGDに戻しました。
横軸にエポック数 縦軸に損失です。 きれいな右肩下がりです。

次回

Web Application: 第6回 はじめてのwebアプリ