Contents
未解決の課題・疑問点
- model.train()とmodel.eval()の使い方が分からない。
- 計算の高速化(GPUの利用)
- 適切なエピソード数
- 適切なメモリバッファ数
- ネットワークの入力値?パラメータ?の正規化。
- 保存したパラメータを読み出すのはactorとtarget_actorまたcriticとtarget_criticで共通で良いのだろうか。
model.train()とmodel.eval()の使い方
ニューラルネットワークの訓練モードと評価モードを切り替えるメソドのようです。
例えばNNモデルがactorの場合
インスタンス生成:actor = ActorNN(引数) してから
actor.train()で訓練モードに設定すると、バッチ正規化やドロップアウトなどの要素が有効になります。あくまで自分でバッチ正規化、ドロップアウトを設定していた場合です。
逆に、actor.eval()にするとバッチ正規化、ドロップアウトを設定していたとしても無効化されます。
ここで重要なのはactor.eval()であっても勾配は計算するし、パラメータ更新も行われるということです。評価モードということなので、推論だけするのかと勘違いしてしまいますが違います。
証拠としてスクリプトを置いておきますので実行してみてください。ちゃんと勾配計算して損失関数の値も減少していきます。
サンプルスクリプト
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt class ActorNN(nn.Module): def __init__(self, n_inputs, n_hidden, n_outputs): super(ActorNN, self).__init__() self.fc1 = nn.Linear(n_inputs, n_hidden) self.fc2 = nn.Linear(n_hidden, n_hidden) self.fc3 = nn.Linear(n_hidden, n_outputs) #self.optimizer = optim.SGD(self.parameters(), lr=0.01) self.optimizer = optim.SGD(self.parameters(), lr=0.01) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) y_pred = F.tanh(self.fc3(x)) return y_pred actor = ActorNN(n_inputs=4, n_hidden=256, n_outputs=4) #actor.train() actor.eval() inputs = T.tensor([1,2,3,4], dtype=T.float32) y_label = T.tensor([0,1,0,0], dtype=T.float32) threshold = 1e-4 losses = [] N_EPOCHS = 10000 for epoch in range(N_EPOCHS): y_pred = actor.forward(inputs) loss = F.mse_loss(y_pred, y_label) actor.optimizer.zero_grad() loss.backward() actor.optimizer.step() print(epoch, loss.item(), y_pred.detach().numpy()) losses.append(loss.detach().numpy()) if loss.detach().numpy() < threshold: break plt.plot(losses) plt.show()そ |
パラメータ更新による損失関数の減少グラフ
推論するときはOUActionNoise()を止めよう
バッチ正規化やドロップアウトで訓練した場合、actor.eval()で無効化が必要なのはわかりました。しかし行動ノイズは依然として有効なので、こちらも止めましょう。
ou_noise = OUActionNoise(mu=np.zeros(1), sigma=0)
のように sigmaを0に設定することで更新を停止するギミックが必要になります。
メインスクリプト
1 |
EVAL_TRAIN_MODE = 'eval_mode' # 評価モードか訓練モードかを選択 |
1 2 3 4 |
# 2.エージェントクラスのインスタンスを生成する agent = AgentDDPG(alpha=0.01, beta=0.01, gamma=0.99, tau=0.01, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=256, layer2_size=256, batch_size=64, mode=EVAL_TRAIN_MODE) |
AgentDDPGクラス
1 2 3 4 5 6 7 8 9 10 11 12 13 |
class AgentDDPG: def __init__(self, alpha=0.000025, beta=0.00025, gamma=0.99, tau=0.001, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=64, layer2_size=64, batch_size=64, mode='train_mode'): # 45.行動ノイズのインスタンス化 self.mode = mode if self.mode == 'train_mode': self.noise = OUActionNoise(mu=np.zeros(n_action_space)) elif self.mode == 'eval_mode': self.noise = OUActionNoise(mu=np.zeros(n_action_space), sigma=0) else: print('mode error') |
ハーフチーターがプルプルしなくなりました。
しかし、各ニューラルネットワークのパラメータ更新は止まっているわけではありません。
パラメータ更新を止める
書きかけです。おそらく、EVAL_TRAIN_MODE = ‘eval_mode’ でないときだけパラメータ更新メソドである、optim.step()を行うようにすればよいと思います。
if EVAL_TRAIN_MODE != ‘eval_mode’:
self.optimizer.step()
現在のスクリプト全体
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import gymnasium as gym import time import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import matplotlib.pyplot as plt import os """ nvidia CUDA Toolkit 12.1 https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local Download cuda_12.1.1_531.14_windows.exe """ """ pip install pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121 pip install gymnasium pip install gymnasium[mujoco] pip install matplotlib pip install mujoco """ # 44.OUActionNOoiseクラスを作成する class OUActionNoise(object): def __init__(self, mu, sigma=0.15, theta=0.2, dt=1e-2, x0=None): self.mu = mu self.sigma = sigma self.theta = theta self.dt = dt self.x0 = x0 self.reset() def __call__(self): x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \ self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape) self.x_prev = x return x def reset(self): self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu) # 10. ReplayBufferクラスを新規作成する class ReplayBuffer: def __init__(self, max_memory_size, n_obs_space, n_action_space): self.max_memory_size = max_memory_size self.n_obs_space = n_obs_space self.n_action_space = n_action_space self.memory_count = 0 self.state_memory = np.zeros((self.max_memory_size, self.n_obs_space)) self.action_memory = np.zeros((self.max_memory_size, self.n_action_space)) self.reward_memory = np.zeros(self.max_memory_size) self.next_state_memory = np.zeros((self.max_memory_size, self.n_obs_space)) self.terminal_memory = np.zeros(self.max_memory_size) #self.terminal_memory = np.zeros(self.max_memory_size, dtype=np.bool) # 11.トランジション保存のためstore_transitionメソドを作成する def store_transition(self, obs, action, reward, next_state, done): #print('store_transition is working.') index = self.memory_count % self.max_memory_size # 最大メモリー数に到達したら、古いデータから上書きされていくギミック #print('obs.detach().numpy().flatten():',obs.detach().numpy().flatten()) self.state_memory[index] = obs.detach().numpy().flatten() self.action_memory[index] = action.flatten() self.reward_memory[index] = reward.flatten() self.next_state_memory[index] = next_state.flatten() self.terminal_memory[index] = 1 - int(done) # ゴールならterminal = 0 となるように #print('state_memory :', self.state_memory) #print('action_memory :', self.action_memory) #print('reward_memory :', self.reward_memory) #print('next_state_memory :', self.next_state_memory) #print('memory.state_memory :', self.terminal_memory) #print('type of state_memory :', type(self.state_memory[0][0])) #print('type of action_memory :', type(self.action_memory[0][0])) #print('type of reward_memory :', type(self.reward_memory[0])) #print('type of next_state_memory :', type(self.next_state_memory[0][0])) #print('type of memory.state_memory :', type(self.terminal_memory[0])) self.memory_count += 1 #print('memory_count :', agent.memory.memory_count) # 16 バッファメモリーからランダムに抽出する def sample_buffer(self, batch_size): # indexが最大メモリに到達していない場合を想定する。 max_index = min(self.max_memory_size, self.memory_count) choosed_index = np.random.choice(max_index, batch_size) observations = self.state_memory[choosed_index] actions = self.action_memory[choosed_index] rewards = self.reward_memory[choosed_index] next_states = self.next_state_memory[choosed_index] terminals = self.terminal_memory[choosed_index] return observations, actions, rewards, next_states, terminals # 6.ActorNNクラスを新規作成する class ActorNN(nn.Module): def __init__(self, alpha=0.001, n_obs_space=17, n_action_space=6, layer1_size=256, layer2_size=256, batch_size=64): #print('ActorNN.__init__ is working.') super(ActorNN, self).__init__() self.fc1 = nn.Linear(n_obs_space, layer1_size) self.fc2 = nn.Linear(layer1_size, layer2_size) self.fc3 = nn.Linear(layer2_size, n_action_space) #26.最適化処理としてアダムを設定する self.optimizer = optim.Adam(self.parameters(), lr=alpha) # 48. actorパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('actor_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('actor_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'actor_params.pt') else: print("パラメータファイルが見つかりません:", 'actor_params.pt') def forward(self, obs): #print('AgetDDPG.ActorNN.forward is working') #print('====ここまではOK1====') x = self.fc1(obs) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) action = F.tanh(x) return action # 22.CriticNNクラスを新規作成する class CriticNN(nn.Module): def __init__(self, beta=0.001, n_obs_space=17, n_action_space=6, layer1_size=256, layer2_size=256, batch_size=64): #print('CriticNN.__init__ is working.') super(CriticNN, self).__init__() # クリティックNNは観察空間+行動空間の2つを入力とする構造 input_dim = n_obs_space + n_action_space self.fc1 = nn.Linear(input_dim, layer1_size) self.fc2 = nn.Linear(layer1_size, layer2_size) self.fc3 = nn.Linear(layer2_size, 1) # 最後は1個で良い #27.最適化処理としてアダムを設定する self.optimizer = optim.Adam(self.parameters(), lr=beta) # 49. criticパラメータの読み出し # もし、パラメータのデータが存在していたらそのパラメータで初期化する。 # パラメータファイルの存在チェック if T.cuda.is_available(): map_location = 'cuda' else: map_location = 'cpu' if os.path.isfile('critic_params.pt'): # パラメータファイルが存在する場合はロード self.load_state_dict(T.load('critic_params.pt', map_location=map_location)) print("パラメータファイルをロードしました:", 'critic_params.pt') else: print("パラメータファイルが見つかりません:", 'critic_params.pt') def forward(self, obs, action): input_data = T.cat([obs, action], dim=1) x = self.fc1(input_data) x = F.relu(x) x =self.fc2(x) x = F.relu(x) x = self.fc3(x) return x #一つの状態価値を出力する。 # 3.エージェントクラスを定義する class AgentDDPG: def __init__(self, alpha=0.000025, beta=0.00025, gamma=0.99, tau=0.001, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=64, layer2_size=64, batch_size=64, mode='train_mode'): #print('AgentDDPG.__init__ is working.') # 5.ActorNNクラスのインスタンスを生成する self.alpha = alpha self.beta = beta self.gamma = gamma self.tau = tau self.n_obs_space = n_obs_space self.n_action_space = n_action_space self.n_state_action_value = n_state_action_value self.layer1_size = layer1_size self.layer2_size = layer2_size # 13.バッチサイズを決めておく self.batch_size = batch_size self.actor = ActorNN(alpha=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 9.memoryインスタンスを追加 self.MAX_MEMORY_SIZE = 10000 self.memory = ReplayBuffer(max_memory_size=self.MAX_MEMORY_SIZE, n_obs_space=self.n_obs_space, n_action_space=self.n_action_space) # 19.ターゲットアクターネットワークインスタンスtarget_actorを作成する # actorとtarget_actorのネットワークは同じActorNNで良い self.target_actor = ActorNN(alpha=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 21.ターゲットクリティックネットワークインスタンスtareget_criticを作成する self.target_critic = CriticNN(beta=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # 24.クリティックネットワークインスタンスcriticを作成する。 self.critic = CriticNN(beta=0.000025, n_obs_space=17, n_action_space=6, layer1_size=64, layer2_size=64, batch_size=64) # アクターロスとクリティックロス self.actor_loss = 0 self.critic_loss = 0 # 45.行動ノイズのインスタンス化 self.mode = mode if self.mode == 'train_mode': self.noise = OUActionNoise(mu=np.zeros(n_action_space)) elif self.mode == 'eval_mode': self.noise = OUActionNoise(mu=np.zeros(n_action_space), sigma=0) else: print('mode error') def choose_action(self, obs): #print('AgentDDPG.choose_action is working.') # 4.方策(アクター)はニューラルネットワークで表現する。 # ActorNNクラスを新規作成し、インスタンスactorとして使用する。 action = self.actor.forward(obs) # 46.行動ノイズを入れて探索性を向上させる。 action += T.tensor(self.noise(), dtype=T.float32) action = action.detach().numpy() return action # 8.remenberメソドを追加 def remember(self, obs, action, reward, next_state, done): self.memory.store_transition(obs, action, reward, next_state, done) # 13.learnメソドを追加 def learn(self): # 14.バッチサイズ分のトランジションが集まるまでは何も実行しない。 if self.memory.memory_count < self.batch_size: return # 15.メモリバッファからデータを抜き出す sample_buffer() # バッチ化されているので変数名を複数形にする observations, actions, rewards, next_states, terminals = self.memory.sample_buffer(self.batch_size) #print('s:', observations) #print(observations.shape) #print('a :', actions) #print('r :', rewards) #print('s_ :', next_states) #print('terminal :', terminals) # 17.抜き出したデータをpytorchで微分可能なようにtorch.tensor化する observations = T.tensor(observations, dtype=T.float32) actions = T.tensor(actions, dtype=T.float32) rewards = T.tensor(rewards, dtype=T.float32) next_states = T.tensor(next_states, dtype=T.float32) terminals = T.tensor(terminals, dtype=T.float32) # 18.ターゲットアクターネットワークインスタンスtarget_actorに # 次の状態next_satesを入れて、ターゲットアクションtarget_actionsとして取り出す。 # このターゲットネットワークはターゲットでないネットワークとNNパラメータを共有させる。 #print('next_states :', next_states) target_actions = self.target_actor.forward(next_states) # 20.ターゲットクリティックネットワークインスタンスtarget_criticに # 次の状態next_statesと上記より算出したターゲットアクションの2つを入力して # 価値関数の推定値ターゲットバリューを出力する。 # TDターゲット:r + γ*V(w)[s_t+1] の部分のこと。 # ターゲットクリティックバリューはターゲットアクターネットワークを使う target_critic_values = self.target_critic.forward(next_states, target_actions) # 23.ベースラインとして機能するクリティックネットワーク(価値関数V(w)[s_t]ネットワーク)に # 現在の状態observationsと行動actionsを入力して # クリティックバリューを算出する critic_values = self.critic.forward(observations, actions) # 25.TDターゲットを算出する:r + γ*V(w)[s_t+1] td_targets = [] for i in range(self.batch_size): td_target = rewards[i] + self.gamma * target_critic_values[i] * terminals[i] td_targets.append(td_target) # TDターゲットの形をバッチに整える td_targets = T.tensor(td_targets, dtype=T.float32) td_targets = td_targets.view(self.batch_size, 1) #viewはreshapeと同じ。64x1に見え方を変更した、という意味 #print('td_targets :', td_targets) # ==== (1)クリティックの学習 ==== # 28.クリティックの勾配をゼロに初期化する self.critic.optimizer.zero_grad() # 29. TDターゲットと状態価値の二乗誤差を算出して、クリティックの損失関数とする。バッチサイズは64個 critic_loss = F.mse_loss(td_targets, critic_values) self.critic_loss = critic_loss #print('critic_loss : ', critic_loss) # tensor(0.0485, grad_fn=<MseLossBackward0>) # 30. クリティックの損失関数を微分して、勾配を算出する critic_loss.backward() # 31. 勾配からオプティマイザーによってクリティックのパラメータ(重みとバイアス)を更新する self.critic.optimizer.step() # ==== (2)アクターの学習 ==== # 32. アクターの勾配をゼロに初期化する self.actor.optimizer.zero_grad() # 33. アクターに観測情報を入力して行動を算出する。バッチサイズは64個 predicted_actions = self.actor.forward(observations) # 34.アクターの損失関数を算出する # Actorの目的は、Criticネットワークの出力(行動価値)を最大化するような行動を選択すること。 # なので、actorNN→criticNNのDDPG構造全体の出力結果をactor_lossとして、actorNNとcriticNNの両方をbackwardし、 # actorだけをパラメータ更新することによりactorの学習をすることができる。 actor_loss = -self.critic.forward(observations, predicted_actions) actor_loss = T.mean(actor_loss) self.actor_loss = actor_loss #print(f'actor_loss: {actor_loss}, critic_loss: {critic_loss}') # 35. DDPG構造全体の損失関数actor_lossを微分し、勾配を算出する actor_loss.backward() # 36. 勾配からオプティマイザーによってアクターのパラメータだけを(重みとバイアス)を更新する self.actor.optimizer.step() # 37. 全ニューラルネットワークのパラメータを更新する。 self.update_network_parameters() # 37. パラメータ更新メソド。 def update_network_parameters(self, tau=None): if tau is None: tau = self.tau # 38. actor, critic, target_actor, target_criticのネットワーク内の全てのパラメータ(重みとバイアス)とその名前を取得する # actorとcriticは先ほど更新されたばかりのパラメーター actor_params = self.actor.named_parameters() critic_params = self.critic.named_parameters() target_actor_params = self.target_actor.named_parameters() target_critic_params = self.target_critic.named_parameters() #print('actor_params : ', actor_params) # actor_params : <generator object Module.named_parameters at 0x000001661B2D9D48> # 39. パラメータをディクショナリとして取り出す。 actor_params_dict = dict(actor_params) critic_params_dict = dict(critic_params) target_actor_params_dict = dict(target_actor_params) target_critic_params_dict = dict(target_critic_params) #print('actor_params_dict : ', actor_params_dict) #print(actor_params_dict.keys()) """ actor_params_dict : {'fc1.weight': Parameter containing: tensor([[-0.1895, -0.0343, 0.1138, ..., 0.2157, 0.0527, -0.1173],/ dict_keys(['fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight', 'fc3.bias']) """ # 40. クリティックの各パラメーター毎に 更新重みtau=0.0001の分だけほんの少しcriticパラメータをtarget_criticパラメータに近づける。 for name in critic_params_dict: critic_params_dict[name] = tau * critic_params_dict[name].clone() + \ (1-tau) * target_critic_params_dict[name].clone() # 41. 更新したcriticパラメータをtarget_criticのパラメータとしてロードする。 self.target_critic.load_state_dict(critic_params_dict) # 42.アクターの各パラメーター毎に 更新重みtau=0.0001の分だけほんの少しactorパラメータをtarget_actorパラメータに近づける。 for name in actor_params_dict: actor_params_dict[name] = tau * actor_params_dict[name].clone() + \ (1 - tau) * target_actor_params_dict[name].clone() # 43. 更新したactorパラメータをtarget_actorのパラメータとしてロードする。 self.target_actor.load_state_dict(actor_params_dict) #### =================== メインスクリプト ======================= #### EVAL_TRAIN_MODE = 'train_mode' # 評価モードか訓練モードかを選択 EPISODES = 1001# episodes STEPS = 500 # steps DELAY_TIME = 0.00 # sec # 2.エージェントクラスのインスタンスを生成する agent = AgentDDPG(alpha=0.01, beta=0.01, gamma=0.99, tau=0.01, n_obs_space=17 , n_action_space=6, n_state_action_value=1, layer1_size=256, layer2_size=256, batch_size=64, mode=EVAL_TRAIN_MODE) if EVAL_TRAIN_MODE == 'train_mode': env = gym.make("HalfCheetah-v4", render_mode='depth_array') elif EVAL_TRAIN_MODE == 'eval_mode': env = gym.make("HalfCheetah-v4", render_mode= 'human') total_rewards = [] actor_losses = [] critic_losses = [] for episode in range(EPISODES): obs = env.reset() obs = T.tensor(obs[0], dtype=T.float) # tensor([ 0.0040, 0.0199, -0.0622, 0.0594, -0.0605, 0.0577, -0.0056, 0.0333, -0.0072, 0.0532, -0.0512, 0.0173, -0.0529, -0.1104, 0.0946, -0.0559, 0.0824]) #print(type(obs)) # observation_space : Box(-inf, inf, (17,), float64) #print('observation_space : ', env.observation_space) #print('obs :', obs) reward: float = 0 total_reward: float = 0 done: bool = False for j in range(STEPS): env.render() # ここをDDPGに置き換えていく action = agent.choose_action(obs) # 1.Agentクラスを定義していく #action : [ 0.06660474 -0.11753064 0.02527559 0.06465236 0.1050786 0.05048539] #print('====ここまではOK4====') #print('action_space : ', env.action_space) #print('action : ', action) next_state, reward, done, _, info = env.step(action) #print('next_state, reward, done, _, info :', next_state, reward, done, _, info) """ action : [ 0.06660474 -0.11753064 0.02527559 0.06465236 0.1050786 0.05048539] next_state, reward, done, _, info : [-0.00265179 0.0229547 0.00463243 -0.04729936 -0.00959038 0.04734605 0.03672746 0.02857842 0.09980254 -0.32065693 0.04221647 1.58668951 -2.31089174 1.30338924 -0.25465526 1.08250465 -0.14134398] 0.07553858359316026 False False {'x_position': -0.09233384215910741, 'x_velocity': 0.07920445513883267, 'reward_run': 0.07920445513883267, 'reward_ctrl': -0.0036658715456724168} """ #7. トラジェクトを保存する。経験再生(ReplayBuffer) agent.remember(obs, action, reward, next_state, int(done)) #12. ニューラルネットワークを学習する agent.learn() # 26.エピソード内での報酬を累積していく total_reward += reward # 27. next_stateをobsとして再出発する #print('next_state:', next_state) obs = next_state obs = T.tensor(obs, dtype=T.float) # 28. チーターの動きを見たいのでスリープを入れる time.sleep(DELAY_TIME) #print('total_reward : ', total_reward) total_rewards.append(total_reward) actor_losses.append(float(agent.actor_loss)) critic_losses.append(float(agent.critic_loss)) # print('epsisode', i, 'score %.2f' % score, '100 game sverage %.2f' % np.mean(score_history[-100:])) # 47. 各ニューラルネットワークのパラメータを10エピソード毎に保存する print('episode, total_reward : ', episode , total_reward) if episode % 10 == 0: T.save(agent.actor.state_dict(), 'actor_params.pt') T.save(agent.critic.state_dict(), 'critic_params.pt') T.save(agent.target_actor.state_dict(), 'target_actor_params.pt') T.save(agent.target_critic.state_dict(), 'target_critic_params.pt') print('==== params were saved. ====') #print('total_rewards : ', total_rewards) #plt.plot(total_rewards) #plt.plot(actor_losses, label='actor_losses') #plt.plot(critic_losses, label='critic_losses') plt.plot(total_rewards, label='total_rewards') plt.legend() plt.grid(True) plt.ioff() plt.show() env.close() # 空なんですけど・・・ print('script is done.') # https://gymnasium.farama.org/ |
The following two tabs change content below.
Keita N
最新記事 by Keita N (全て見る)
- 2024/1/13 ビットコインETFの取引開始:新たな時代の幕開け - 2024年1月13日
- 2024/1/5 日本ビジネスにおける変革の必要性とその方向性 - 2024年1月6日
- 2024/1/3 アメリカ債権ETFの見通しと最新動向 - 2024年1月3日